Semidefinite Programming Algorithms for Sensor Network Localization using Angle of Arrival Information

Pratik Biswas, Hamid Aghajan, Yinyu Ye
Wireless Sensor Networks Laboratory, Dept. of Electrical Engineering, Stanford University
Room 318, 161 Packard Building, 350 Serra Mall, Stanford, CA-94305
pbswas,haghajan,yyye @stanford.edu

Abstract

The problem of position estimation in sensor networks using a combination of distance and angle information as well as pure angle information is discussed. For this purpose, a semidefinite programming relaxation based method that has been demonstrated on pure distance information is extended to solve the problem. Practical considerations such as the effect of noise and computational effort are also addressed. In particular, a random constraint selection method to minimize the number of constraints in the problem formulation is described. The performance evaluation of the technique with regard to estimation accuracy and computation time is also presented by the means of extensive simulations.

1. Introduction

Localization or position estimation in sensor networks has a wide variety of applications including target tracking, routing, asset location etc. In general, the information collected by a sensor node is more meaningful if we are also aware of its position.

The localization problem usually involves estimating positions of the nodes in a sensor network based on a mixture of mutual distance, angle or proximity constraints. Existing methods exploit a variety of techniques including iterative triangulation multidimensional scaling and convex programming.

In particular, the use of Semidefinite Programming relaxations has been demonstrated for the localization problem in [2]. The technique lends a nice interpretation to the localization problem under the general framework of Euclidean distance geometry. The technique is especially appealing in the scenario where we wish to exploit the collaborative nature of sensor networks in order to use the mutual information between the sensor nodes. While this does not allow the technique to be purely distributed (where each sensor node can infer its position on its own), it takes advantage of the collective information shared between a network of nodes, thus leading to more precise position determination.

While the application of SDP relaxations to pure distance information has been discussed in previous work, a framework does not exist where we can use this technique for angle information. Solving this problem is particularly useful in a scenario where we use sensors that are also able to detect mutual angles, like in image sensor nodes. This paper takes a step in this direction by extending the SDP model to solve the localization problem using angle information in combination with distance information, or independently. The performance of this technique with respect to different factors is also evaluated.

2. Background

The use of angle information for sensor network localization has been investigated by Niculescu and Nath [6]. It is assumed that the network has a few landmark or anchor points whose positions are already known. The algorithm uses information between the anchors and unknown points to set up triangulation equations in order to determine positions of unknown points. The calculated positions are then forwarded to other unknown points and used in further triangulation.

It is often useful to consider methods that exploit the collective information between the nodes in a centralized fashion. A technique using linear bounding hyperplane based constraints is described in Doherty et al [4]. However, the constraints may be too loose to provide a meaningful solution. Our method also attempts to solve the position estimation problem in one step by solving the problem using global information. This avoids the issue of forwarding and also error propagation as in [6]. Furthermore, by using global information, it is hoped that solutions are more accurate. Our method can provide an alternative to [4] with tighter constraints.

The quadratic programming formulation of the distance geometry problem with distance information will serve as a good starting point to the discussion. Suppose that we have m known points $a_k \in \mathbb{R}^2$, $k = 1,\ldots, m$, and n unknown points $x_j \in \mathbb{R}^2$, $j = 1,\ldots,n$. Let N_i be the set of k, j and N_i be the set of i, j indices for which the Euclidean distance measures d_{ij} corresponding to the distance between the points a_k and x_j, or d_{ij} corresponding to the distance between the points x_i and x_j are known. The distance measures may be corrupted with noise.

Then, the quadratic model problem can be defined by

$$\min \quad \sum_{i,j} |\alpha_{ij}| + \sum_{k,j} |\alpha_{kj}|$$

s.t. $\|x_i-x_j\|^2 = (d_{ij})^2 + \alpha_{ij}, \forall i,j \in N_a,$

$$\|a_k-x_j\|^2 = (d_{kj})^2 + \alpha_{kj}, \forall k,j \in N_a.$$

Other sophisticated models that handle noisy distance information more effectively by minimizing other objectives can also be developed.

Let $X = [x_1 \ x_2 \ldots \ x_n]$ be the $2 \times n$ matrix that needs to be determined. Then

$$\|x_i-x_j\|^2 = e_{ij}^T X^T X e_{ij} \quad \|a_k-x_j\|^2 = (a_k-e_j)^T [X]^T [X](a_k-e_j),$$

where e_{ij} is the vector with 1 at the ith position, -1 at the jth position and zero everywhere else; and e_j is the vector of all zero except -1 at the jth position. We can obtain a formulation
of the problem in the matrix form. Unfortunately this problem is not convex. Previous approaches have completely ignored the nonconvex constraints [4]. The approach described in [2] retains them but relaxes the entire problem into a standard SDP problem.

Let \(Y = X^T X \). We relax this constraint to \(Y \succeq X^T X \). Basically, this technique is a rank constraint relaxation that is also a key idea in solving other NP hard quadratic programs using SDP. This can be formulated as a matrix linear inequality [3]

\[
Z = \begin{pmatrix} I & X \end{pmatrix} X \succeq 0
\]

So the problem reduces to a set of linear constraints and a linear matrix inequality and can therefore be solved as an SDP.

The SDP formulation is

\[
\begin{align*}
\min & \quad \sum_{i,j} |a_{ij}| + \sum_{k} |a_{kj}| \\
\text{s.t.} & \quad (1;0;0)^T Z(1;0;0) = 1 \\
& \quad (0;1;0)^T Z(0;1;0) = 1 \\
& \quad (1;1;0)^T Z(1;1;0) = 2 \\
& \quad (0;e_{ij})^T Z(0;e_{ij}) = (d_{ij})^2 + a_{ij}, \forall i, j \in \mathbb{N}_a, \\
& \quad (a_k;e_{ij})^T Z(a_k;e_{ij}) = (d_{ik})^2 + a_k, \forall k, j \in \mathbb{N}_a \\
& \quad Z \succeq 0.
\end{align*}
\]

A detailed analysis of this approach and experimental results are presented in [2].

3. Integrating Angle Information

The scenario for which we will describe our algorithm is very similar to that described in [6]. Consider \(n \) unknown points \(x_j \in \mathbb{R}^2, j = 1,...,n \). All angle measurements are made at each sensor relative to its own axis. The orientation \(\theta_i \) of the axis with respect to a global coordinate system after a random deployment of the network is not known. There are also a set of \(m \) anchor nodes \(a_k \in \mathbb{R}^2, k = 1,...,m \), that is, nodes whose positions are known a priori.

Every sensor can detect neighboring sensors which are within its field of view and a specified communication range of it. The field of view is limited by the maximum angle (on either side of the axis) that the sensor can detect with respect to its own axis. Depending on the type of sensing technology used, these parameters can be accordingly set. Since every measurement is with respect to the axis of a node at every unknown sensor, we also have angle measurements corresponding to the angle between 2 other sensors (either anchors or unknown) as seen from the sensor if the 2 sensors are within communication distance range of it and within its field of view. For a set of 3 points like in (Figure 1), we have the angle \(\theta_{jk} \) between \(x_i \) and \(x_k \) as seen from \(x_j \). The objective now is to find the positions of the unknown nodes. From the position information, we can also derive the orientation information.

3.1. Distance and Angle Information

The first case we will consider is when we have both angle and distance information. We define a set \(\mathbb{N}_b \) corresponding to triplets of points. For a set of three points in \(\mathbb{N}_b \), we have the angle \(\theta_{jk} \) between \(a_k \) and \(x_j \) as seen from \(x_i \) as well as the distance \(d_{ik} \) and \(d_{ij} \); or the angle \(\theta_{ij} \) between \(x_i \) and \(x_j \) as seen from \(x_k \) as well as the distance \(d_{ij} \) and \(d_{jk} \).

The angle information between unknown sensors \(i \) and \(l \) as seen from sensor \(j \) can be expressed as

\[
\frac{(x_j - x_i)^T(x_j - x_l)}{d_{ij}d_{lj}} = \cos \theta_{ij}, \text{ or}
\]

\[
\|x_l - x_i\|^2 = d_{ij}^2 + d_{lj}^2 - 2d_{ij}d_{lj}\cos \theta_{ij}
\]

where \(\theta_{ijl} \) is the angle between sensor \(i \) and sensor \(l \) as seen from sensor \(j \), \(d_{ij} \) is the distance between sensor \(j \) and sensor \(i \) and \(d_{lj} \) is the distance between sensor \(j \) and sensor \(l \). A similar equation can also be derived when an anchor \(a_k \) is involved.

Now by applying the SDP relaxation described before in Section 2 to convert the equations of type into linear equations and adding a linear matrix inequality, the problem consisting of the quadratic constraints of the type described above can be reduced once again to an SDP form.

3.2. Pure Angle Information

Next we will consider the localization problem for pure angle information. The problem can be formulated in a variety of ways depending upon how we choose to exploit the angle constraints in our equations. The idea is to maintain the Euclidean distance geometry ‘flavor’ in our approach where the quadratic term in the formulation is simply relaxed into an SDP. With this aim in mind, the following solution is presented.

The same situation (with regard to angle measurements) as considered in the case of combined distance and angle information will be used here as well. The only difference is that absolutely no distance information between sensors is available. Consider 3 points \(x_i, x_j \) and \(x_k \) that are not located on the same line. One basic property concerning circles is that the angle sub-
tended by 2 of these points, say \(x_i \) and \(x_k \) at the center of the circle that circumscribes the 3 points is twice the angle subtended by the 2 points at the third point \(x_j \) (Figure 2). Let the radius of the circumscribing circle be \(r_{ijk} \), which is also unknown. Then by a simple application of the cosine law (similar to the one described in the previous section) on the triangle with the points \(x_i, x_j \) and the center of the circle:

\[
\|x_i - x_k\|^2 = 2 \hat{r}_{ijk}^2 - 2r_{ijk}r_{ik} \cos \phi_{ijk}.
\]

Therefore

\[
\|x_i - x_k\|^2 = 2\hat{r}_{ijk}^2(1 - \cos \phi_{ijk}).
\]

(12)

We can create a similar set of equations in the unknowns \(x_i, x_j, x_k \) and \(r_{ijk} \) using the angles between all such sets of points. These sets of equations can be generated for all sets of points that have mutual angle information with each other. For each set of 3 points, a new unknown \(r_{ijk} \) is introduced.

It can be observed that once again the constraints are quadratic in the matrix \(X = [x_1, x_2, \ldots, x_n] \). By applying the SDP relaxation, that is, using the substitution \(Y = X^T X \) and relaxing this constraint to \(Y \geq X^T X \), the problem is reduced once again to an SDP with one matrix linear inequality and some linear constraints, with the unknowns \(Y, X, r_{ijk} \). Furthermore, we can also include the linear constraints introduced by angle measurements at the anchors as described in equation (??).

It is pertinent to ask if the introduction of new unknowns \(r_{ijk} \) will cause the problem to be underdetermined. The matrix \(Y \) has \(n(n+1)/2 \) unknowns and \(X \) has \(2n \) unknowns. Suppose the number of triplets that have mutual angle information amongst each other is \(k \). The angle measurements considered are exact, that is, they do not have any error. Then \(k \) more unknowns corresponding to the radii of the circumscribing circles are introduced. At the same time, we have constraints for each circle, so a total of \(3k \) constraints exist. Hence as long as

\[3k > n(n+1)/2 + 2n,
\]

the set of equations will have a unique feasible solution. The matrix \(X^* = [\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_n] \) and \(Y^* = (X^*)^T X^* \) where \(\hat{x}_i \) is the true position of the sensor \(i \), will be the solution satisfying these equations. Therefore if \(k \) is large enough, the unique solution will exist. The maximum possible value of \(k \) is in fact \(\binom{n}{3} \). If however, the connectivity is high, then the size of the triplet set \(k \) is also large enough for the set of equations to have a unique solution.

4. Practical Considerations

In realistic scenarios, the angle information is not entirely accurate. So softer SDP models that minimize the errors in the constraints can be developed based on constraints discussed in the previous section by introducing slack variables. Note that our formulation allows flexibility in choosing any combination of exact or inexact distance and angle constraints depending on the information provided.

For example, for a constraint of the type in Equation (12)

\[
\|x_i - x_k\|^2 = 2\hat{r}_{ijk}^2(1 - \cos \phi_{ijk}).
\]

With noisy angle information, it can be modified to

\[
\|x_i - x_k\|^2 = 2\hat{r}_{ijk}^2(1 - \cos \phi_{ijk}) + \Delta_{ijk},
\]

where \(\Delta_{ijk} \) is the error in the equation.

We can now choose to minimize an objective function corresponding to the resulting SDP, the absolute sum of these errors. We can also choose alternative objective functions, such as sum of error squares, that penalize the errors in the equations differently. The choice a suitable objective function to minimize that gives the best performance for a particular noise model while being computationally tractable is a further research topic.

The SDP solution can also serve as a good starting point for local refinement through a local optimization method. This idea has been explored for distance based information in [5]. Extending gradient based refinement ideas for angle information is being pursued.

Because we consider triplets of points, the number of angle constraints of type in Equations (3.1) and (12) increase very substantially \((O(n^3))\) as the network size \(n\) and radio range \(R\) increases. It is very inefficient to include all the angle constraints if only a few of them can be used to obtain the solution. The problem becomes too strictly overdetermined when in fact most of the constraints are redundant and the problem can be solved using only a subset of the constraints. For example, even for a network size of 40, the number of constraints for a radio range of 0.3 and omnidirectional angle measurements is about 1100. Clearly, the problem starts becoming intractable for even such small cases.

Therefore, we propose an intelligent constraint generation methodology that can help in keeping the number of constraints selected small enough such that the problem is tractable. In selecting the constraints, we try ensure that the constraints selected are well distributed in terms of the points that they correspond to, that is, there are not too many or too few constraints arising from angle relations for a single point in the network. This can be done by limiting the number of constraints that arise from angle relations for a particular point below a particular threshold. Furthermore, the constraints are between pairs of points. So the constraint selection should not concentrate only on angle constraints corresponding to a particular pair of points as seen from other points. While this can be done by keeping a counter of the number of constraints on every possible pair, clearly this strategy adds a lot of overhead to the actual processing. In order to minimize the cost of the constraint selection, we use a randomized constraint selection technique where a constraint is added to the problem with a certain probability. This probability can be made to depend upon number of desired constraints as a fraction of the total number of possible constraints. The randomized selection ensures that the constraints take into account the global information of the network as opposed to smaller local clusters of points.

While the above mentioned methods work well for networks of up to 70-80 points, severe scalability issues will arise for very large networks of say, thousands of points. We are in the process of developing a distributed method for angle information. Such an algorithm will be similar in spirit to that described in [1] for pure distance information. The entire network will be divided into clusters using anchor information and the smaller SDPs solved for each cluster. The cluster idea still takes advantage of the collective information between a set of nodes which are within a cluster. For points in clusters that are well separated from each other, there is little or no mutual information to begin with. So the problem can be solved in a parallel and ‘decoupled’ fashion in each of the separate clusters. The computations can be made iterative such that points that were well estimated can be used in subsequent iterations to provide estimates for points that were poorly estimated in previous iterations. Information about points that are on the boundary of 2 clusters can even be exchanged between clusters in order to assist in localizing other points within them.

In the case of noisy angle information, the placement of anchors assumes a critical role for both approaches. If the anchors are placed in the interior of the network, the estimations
for points outside the convex hull of the anchor points also tend
to be towards the interior of the network and are therefore quite
erroneous. This problem does not present itself when the
anchors are placed on the perimeter of the network. Therefore for
our simulations, we place four anchors each on the corners of
a square network. The estimation error is reduced significantly
by doing this. We argue that this assumption that anchors are
placed on the perimeter of the network is reasonable in a range
of position estimation scenarios since during deployment of a
network, we should be aware of the overall area in which it it
to be deployed. The placement of powerful anchor nodes on
the perimeter of this area is a feasible assumption. Other an-
chors may be deployed randomly in the interior like the rest
of the nodes. The reason for this behavior is not entirely clear
and more research is required to rigorously establish it. This
analysis will also help in developing formulations that are less
sensitive to error placement and to also devise efficient anchor
placement strategies.

5. Simulation Results

For all results, the averages of 25 independent simulations
for a particular configuration was computed. Simulations were
performed on a networks of 40 nodes randomly placed in a
square region of size 1×1. Each node was given a random axis
orientation between $[-\pi, \pi]$. The distances between the nodes
was calculated. If the distance between 2 nodes i and j was
less than a given radio range R, the angle between the axis of i
and the direction pointing to node j was computed. If the angle
was within field of view, specified by maxang, that is, the max-
imum angle on either side of the axis at which a node can see
other nodes, the angle measurement was included. Otherwise,
all other angle measurements were ignored. The angle measure-
ment mechanism is assumed to be omnidirectional (maxang =
π) in our simulations unless otherwise stated. The measured
angles were modeled to be noisy by setting $\theta = \hat{\theta}(1 + n f \ast N(0,1))$ where θ is the measured angle, $\hat{\theta}$ is the
true value of the angle, nf is a specified constant, and $N(0,1)$
is a normally distributed random variable. Therefore the noise
error in the measurements is modeled as multiplicative and can
be varied by changing nf. In order to find relative angles be-
tween 2 points as seen from a third point, the measured angles
corresponding to the 2 points need to be subtracted, therefore
the angle data use in the problem formulation has higher noise
variance than the measured angle data.

The distance measurements are also modeled to be noisy in
the same manner. In other words $d = d(1 + n f \ast N(0,1))$ where
d is the measured distance and d is the actual distance.

Figure 3 shows the variation of average estimation error(normalized by the radio range R) when the noise in the angle
measurements increases and with different radio ranges. The
maxang is set to π, that is, the angle measurement mechanism
assumed to be omnidirectional. 4 anchors are placed near
the corners of the square network. There are no more anchors
placed in the interior.

Figure 4 shows the variation of estimation error when the
radio range is increased and with different measurement noises.

The advantage of having a higher radio range diminishes
beyond a particular value. This can be explained by the fact
that beyond a certain radio range, there is enough distance and
angle information for the network to be solved. We also dis-
regard some of the redundant information by the random con-

![Figure 3. Variation of estimation error with measurement noise](image_url)

![Figure 4. Variation of estimation error with Radio Range](image_url)
case, and 50-80% R for distance angle case. Since distance information is also used in the latter case, the accuracy is better. The lack of more angle information due to limited field of view clearly hurts the accuracy in the pure angle case. Even as the radio range increases, the effect of less angle information goes down, but less dramatically for the pure angle case as for the distance angle case. It is still about 45% R when \(R = 0.7 \) for the pure angle case whereas enough information is available in the distance angle case for the error to almost vanish.

![Figure 5. Comparisons in different scenarios](image)

Note that the axis orientations of the points are random. By limiting the field of view and the random axis orientations, it is hard to establish with certainty if all enough information is available for all the points to be estimated correctly, especially for the pure angle case. Even when points are within radio range of each other, they are not able to detect each other if they are not in each other’s field of view. As a result, there is very little information for some of the points and they are estimated badly. With higher radio range, this problem can be reduced but the performance is very sensitive because of the random axis orientations. This also suggests that the random constraint selection may need to be fine-tuned in order to include more constraints for the points that appear to have very little information to begin with.

The number of constraints and solution time was also analyzed. Our simulation program is implemented with MATLAB and it uses SDUMI [7] as the SDP solver. The simulations were performed on a Pentium IV 2.0 GHz and 512 MB RAM PC. Figure 7 illustrates how the solution times increase as the number of points in the network increases. Even with random constraint selection, the solution time seems to increase at a superlinear rate with the number of points. This indicates the necessity of developing a scalable distributed method that was mentioned in Section 4.

It is interesting to notice that due to the random constraint selection strategy, the running time is almost independent of the radio range. For example, for a network of 40 points, the number of constraints are usually around 480-520. The number of constraints do not change substantially with increasing radio range and therefore the solution time does not change too much with increasing radio range. Furthermore, the pure angle approach uses more constraints and usually takes longer to solve.

![Figure 7. Solution times vs. Number of points](image)

References

